38 research outputs found

    Data Reduction in Low Powered Wireless Sensor Networks

    Get PDF

    Attack DistributionModeling and Its Applications in Sensor Network Security

    Get PDF
    Defending against attack is the key successful factor for sensor network security. There are many approaches that can be used to detect and defend against attacks, yet few are focused onmodeling attack distribution. Knowing the distribution models of attacks can help system estimate the attack probability and thus defend against them effectively and efficiently. In this paper, we use probability theory to develop a basic uniform model, a basic gradient model, an intelligent uniform model and an intelligent gradient model of attack distribution in order to adapt to different application environments. These models allow systems to estimate the attack probability of each node under a given position and time. Applying these models in system security designs can improve system security performance and decrease the overheads in nearly every security area. Based on these models, we describe a novel probability secure routing algorithm that is effective to defend against attacks whether they are detected or not. Besides this application, we also introduce some other applications, such as secure routing that can save systems available energy and resources while still providing enough security, detecting attack, and key management

    Fair Queueing based Packet Scheduling for Buffered Crossbar Switches

    Get PDF
    Abstract-Recent development in VLSI technology makes it feasible to integrate on-chip memories to crossbar switching fabrics. Switches using such crossbars are called buffered crossbar switches, in which each crosspoint has a small exclusive buffer. The crosspoint buffers decouple input ports and output ports, and reduce the switch scheduling problem to the fair queueing problem. In this paper, we present the fair queueing based packet scheduling scheme for buffered crossbar switches, which requires no speedup and directly handles variable length packets without segmentation and reassembly (SAR). The presented scheme makes scheduling decisions in a distributed manner, and provides performance guarantees. Given the properties of the actual fair queueing algorithm used in the scheduling scheme, we calculate the crosspoint buffer size bound to avoid overflow, and analyze the fairness and delay guarantees provided by the scheduling scheme. In addition, we use WF 2 Q, the fair queueing algorithm with the tightest performance guarantees, as a case study, and present simulation data to verify the analytical results

    ENERGY CONSUMPTION IN WIRELESS SENSOR NETWORKS USING DATA FUSION ASSURANCE

    Get PDF
    ABSTRACT Data fusion techniques reduce total network traffic in a wireless sensor network, since data fusion can integrate multiple raw data sets into one fused data set. However, the security or assurance of the data requires more processing power and is an important issue. Increasing the security of the fusion data increases factors such as power consumption, and packet overhead. Therefore any data fusion assurance scheme must be power efficient as well as secure. There are currently several methods of data fusion assurance that have been proposed. Therefore, this paper looks at the current data fusion assurance methods and proposes new schemes focused on reducing power consumption. In this paper, several data fusion assurance schemes are also compared to determine which scheme is the most energy efficient

    Maximizing Lifetime of Sensor Surveillance Systems

    Full text link

    A UNIFIED MODEL AND METHODOLOGY FOR TEMPORAL OBJECT DATABASES

    No full text
    corecore